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Abstract:   The wingbox optimal design is characterized by the intrinsic non-linearity and large scale of the 

optimization procedures, as well as the inevitable presence of multiple imposed constraints, which limit the 

capabilities of the gradient optimization methods. Using a parametric finite element model this paper proposes a 

heuristic structural-optimization algorithm suitable for the stage of detailed design of a wingbox. The approach is 

demonstrated by solving an optimization problem for the minimum mass of a subsonic jet tapered wing's load-

bearing structure while adhering to the constraints of not exceeding the maximum von Mises stress and providing 

a margin of structural stability. The final evaluation and assessment of the optimization process, as well as the 

obtained results, revealed that the proposed procedure effectively converges to global minima while taking all of 

the imposed constraints into account. 
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1. Introduction 

The wingbox design process must balance the opposing requirements of low mass and high structural 

stiffness. Traditionally, beam finite element models are used to idealize the load-bearing structure of 

large aspect ratio wings during the early phases of design [21]. The process of determining the needed 

number of spars, stringers, and ribs, as well as their dimensions, cross sections, structural materials, and 

relative placements, is defined as initialization of the basic wingbox. At this stage of the design process, 

relevant statistics or internal layout considerations are frequently used to drive decisions. The acquired 

results enable for the creation of a more complete finite element model in the future [22, 23]. 

The required cross-sectional areas and thicknesses of the load-bearing structural components are 

estimated applying appropriate sizing optimization methods with the objective of minimizing structural 

mass while not exceeding the material's maximum von Mises stress and maintaining structural stability. 

The majority of structural optimization problems are nonlinear, constrained  and large in scale, which 

limits the application of gradient optimization methods [4]. As a result, many heuristic and metaheuristic 

optimization strategies, as well as optimality criteria approaches, are frequently used. The sizing 

structural optimization procedure is often referred to as a process for estimating of the optimal values 

for a large number of structural design variables under a variety of functional and box constraints. 

Heuristic optimization methods are best suited for problems with high dimensionality, multimodality 

or lack of gradient information, mainly because in these kind of methods the extremum is searched 

stochastically. The ability of these optimization methods to mimic processes and phenomena observed 

in nature is one of their distinguishing characteristics. Typical heuristic methods for optimization are the 

genetic algorithms [7, 11], the optimization with simulated annealing model [14], etc. Common 

drawback of the genetic optimization methods is their requirement for design variables and objective 

encoding/decoding, as well as the challenges associated with the handling of the constraints. Another 

type of heuristic optimization procedures replicate the social interaction between individuals with 

common interests inside a distinct group. Typical examples in nature are the fish schooling, the flock of 

birds or the bee swarm (Fig. 1). These optimization approaches allow for parametric manipulation of 

the group's individual and collective intelligence. The most well-known examples of this family of 

algorithms include optimization methods based on an ant colony model [5] or on a swarm of intelligent 

particles, known as Particle Swarm Optimization or PSO [13].  



 

Fig. 1 Some heuristic algorithms replicate the social interaction between individuals in a group 

 

The primary benefit of the heuristic approach to structural optimization lies in its ability to perform 

direct global optimization. The main challenge in heuristic optimization methods is taking into 

consideration all of the imposed functional and box constraints. Several strategies for eliminating this 

issue have been proposed as a result of numerous studies in this field. Among the most commonly used 

are the penalty method, the constraint aggregation method, the method of the combined KS-function 

[15, 16], etc. The efficient handling of the imposed constraints generally depends on the level of control 

over the optimization process. As a result, the current paper investigates the concept of heuristic sizing 

optimization of load-bearing structural components for the wingbox of a tapered wing by structural 

optimization approach based on a swarm of intelligent particles (PSO). 

 

2. Methodology 

The method of optimization by a swarm of intelligent particles is based on the notion that social 

exchange of information among individuals in a specific group provides an evolutionary advantage [13]. 

The approach has been used at different stages of design in electronics, automation, energy, and 

mechanical engineering. Particle swarm optimization is one of the most popural and state-of-the-art 

research methods in the field of aircraft structural optimization [2,3,6,8,12,19,20]. 

The optimization process is stochastic in nature and is carried out by updating the positions of each 

particle by a velocity vector, the magnitude and direction of which are determined according to the 

individual and collective achievements of the particles in the swarm (Fig. 2). Convergence to the 

extremal value is achieved by moving particles within the boundaries of the feasible search space via 

mutual sharing of information based on individual and collective memory. As a result, the position of 

each particle is updated depending on the social behavior of the entire swarm, which adjusts itself to the 

search space, concentrating on the areas with the best values of the objective function. 

 
Fig. 2  Basic principle of updating the position and velocity of each of the particles in the swarm 

 

In the N-dimensional search space, the position of each particle is represented by an N-dimensional 

vector 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑁)𝑇 and its velocity by another N-dimensional vector 𝒗 =
{𝑣1, 𝑣2, … , 𝑣𝑖, … , 𝑣𝑁)𝑇.  

Mathematically, the position 𝑥 of the particle 𝑖 in the iteration 𝑘 +  1 is determined as follows: 

(1) 𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 Δ𝑡 ,  



where 𝑣𝑘+1
𝑖  is the updated velocity vector of the particle, Δ𝑡 is the time step of the process, which is 

assumed to be equal to one. 

The velocity vector of the particle is updated according to the following expression: 

(2) 𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑟1

𝑝𝑘
𝑖 − 𝑥𝑘

𝑖

Δ𝑡
+ 𝑐2𝑟2

𝑝𝑘
𝑔

− 𝑥𝑘
𝑖

Δ𝑡
 , 

 

where 𝑣𝑘
𝑖  is the velocity vector at iteration 𝑘; 𝑝𝑘

𝑖  and 𝑝𝑘
𝑔

 represent, respectively, the best position of the 

particle 𝑖 and the best position achieved by the whole swarm in the boundaries of the search space up to 

the current iteration; 𝑟1 and 𝑟2 are uniformly distributed random numbers from 0 to 1; 𝑐1 is the so-called 

cognitive parameter which indicates the degree of confidence in the individual achievements of the 

particles; 𝑐2 is the so-called social parameter that indicates the degree of trust in the collective 

achievement of the swarm; 𝑤 represents the so-called inertia coefficient, which scales the velocity vector 

throughout the optimization procedure.  

In order to maintain the dynamic stability of the swarm, the sum of the coefficients 𝑐1 and 𝑐2 must 

not exceed 4 [13, 17].  

In order to account for the imposed functional constraints, an adaptive parameterless penalty function 

approach has been applied [17]. The penalty coefficient 𝑝𝑗 is based on the arithmetic mean of the 

objective function and the degree of violation of each of the constraints in the current iteration: 

(3) 𝑓′(𝑥𝑘) = {

𝑓(𝑥𝑘) , 𝑖𝑓 𝑥𝑘   𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒                                    

𝑓(𝑥𝑘) + ∑ 𝑝𝑗𝑔𝑗(𝑥𝑘)

𝑚

𝑗=1

  , 𝑖𝑓 𝑥𝑘  𝑖𝑠 𝑛𝑜𝑡 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 
 

 

 

(4) 𝑝𝑗 = |𝑓̅(𝑥𝑘)|
𝑔̅𝑗(𝑥𝑘)

∑ [𝑔̅𝑙(𝑥𝑘)]2𝑚
𝑙=1

 
 

 

(5) 𝑔̅𝑗(𝑥𝑘) =
1

𝑛
∑ max[0, 𝑔𝑗(𝑥𝑘)]

𝑛

𝑘=1

 
 

where 𝑓̅(𝑥𝑘) is the arithmetic mean of the objective function in the swarm at iteration 𝑘, 𝑔̅𝑗(𝑥𝑘) is the 

arithmetic mean of the 𝑗-th functional constraint  in the swarm at iteration 𝑘. Thus the penalty 

coefficients are distributed in the swarm in such a way that those particles that have violated the imposed 

constraints the most will be sanctioned more than others. 

 Flowchart of the algorithm for heuristic sizing structural optimization of the wingbox of a 

tapered wing by a swarm of intelligent particles is presented in Fig. 3. 

 

Fig. 3  Flowchart of the heuristic sizing structural optimization procedure for wingbox detail design 



3. Numerical experiment 

The proposed structural optimization procedure is demonstrated by applying it at the stage of detailed 

design of a wingbox for the tapered wing of a subsonic jet aircraft with specific wing load 585 𝑘𝑔/𝑚2. 

The aerodynamic load is distributed approximately according to an elliptical law and corresponds to the 

conditions at steady level flight with cruising speed 𝑉 = 750 𝑘𝑚 ℎ⁄  (Fig.10). Fig. 4 shows the values of 

the basic geometric parameters of the wing. 

 
Fig. 4 Wing planform basic parameters 

The stress and strain evaluation of the wingbox structure is performed by the finite element method. 

A parametric finite element model was synthesized using the APDL programming language. The model 

is numerically validated in accordance with [1]. Table 1 shows the structural materials, the selected 

types of finite elements and the variable parameters in model of the wingbox and its load-bearing 

components. 

Table 1: Basic parameters of the load-bearing components 

Load-bearing component Structural material Finite element Variable parameter 

Front spar flange 2618 3-D 2-node BEAM 0.01 ≤ 𝑅𝑓𝑙.𝑓𝑟 ≤ 0.08 

Front spar web 2618 3-D 4-node SHELL 0.001 ≤ 𝛿𝑤𝑒𝑏.𝑓𝑟 ≤ 0.01 

Rear spar flange 2618 3-D 2-node BEAM 0.01 ≤ 𝑅𝑓𝑙.𝑟 ≤ 0.08 

Rear spar web 2618 3-D 4-node SHELL 0.001 ≤ 𝛿𝑤𝑒𝑏.𝑟 ≤ 0.01 

Upper skin panels 7075-Т6 3-D 4-node SHELL 0.001 ≤ 𝛿𝑠𝑘𝑖𝑛.𝑢𝑝 ≤ 0.005 

Upper skin stringers 7075-Т6 3-D 2-node BEAM 0.005 ≤ 𝑅𝑠𝑡𝑟.𝑢𝑝 ≤ 0.01 

Bottom skin panels 2024-T3 3-D 4-node SHELL 0.001 ≤ 𝛿𝑠𝑘𝑖𝑛.𝑏𝑜𝑡 ≤ 0.005 

Bottom skin stringers 2024-T3 3-D 2-node BEAM 0.005 ≤ 𝑅𝑠𝑡𝑟.𝑏𝑜𝑡 ≤ 0.01 

Ribs 2024-T3 3-D 4-node SHELL 𝛿реб = 0.003 

A structural optimization problem is defined with the objective of minimizing the wingbox mass 

while satisfying the compatibility condition between the nodal loads and their deflections, as well as the 

imposed functional constraints on equivalent stresses and the buckling load factor and also the box 

constraints on design variables: 

(6) 

min 𝑚𝑤𝑖𝑛𝑔𝑏𝑜𝑥 

𝐾𝑈 = 𝐹 

𝜎𝑣 𝑚𝑎𝑥 − 𝜎𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ≤ 0 

𝜆𝐼 ≥ 2.5 

0.001 ≤ 𝛿𝑠𝑘𝑖𝑛.𝑏𝑜𝑡 ≤ 0.005 

0.001 ≤ 𝛿𝑠𝑘𝑖𝑛.𝑡𝑜𝑝 ≤ 0.005 

0.001 ≤ 𝛿𝑤𝑒𝑏.𝑓𝑟 ≤ 0.01 

0.001 ≤ 𝛿𝑤𝑒𝑏.𝑟 ≤ 0.01 

0.005 ≤ 𝑅𝑠𝑡𝑟.𝑏𝑜𝑡 ≤ 0.01 

0.005 ≤ 𝑅𝑠𝑡𝑟.𝑢𝑝 ≤ 0.01 

0.01 ≤ 𝑅𝑓𝑙.𝑓𝑟 ≤ 0.08 

0.01 ≤ 𝑅𝑓𝑙.𝑟 ≤ 0.08 

𝜎𝑎𝑙𝑙𝑜𝑤𝑒𝑑 = 400 𝑀𝑃𝑎 

 

A swarm of 20 particles with a cognitive coefficient 𝑐1  =  1.5 and a social coefficient 𝑐2  =  0.5 was 

initialized. The inertia coefficient 𝑤 changes dynamically from 0.9 to 0.4 during iterations. The 



convergence criteria for of the optimization procedure is the variation 𝜎2 of the objective function in 

the swarm. The optimization procedure converges to a global extremum at a point in the search space, 

characterized by the following values for the vector of design variables: 

Optimal design variables Optimal wingbox parameters 

 𝑅𝑓𝑙.𝑓𝑟 = 38.86 𝑚𝑚  

 𝛿𝑤𝑒𝑏.𝑓𝑟 = 10 𝑚𝑚  

 𝑅𝑓𝑙.𝑟 = 10.2 𝑚𝑚  

 𝛿𝑤𝑎𝑙𝑙.𝑟 = 14.9 𝑚𝑚  
 𝛿𝑠𝑘𝑖𝑛.𝑢𝑝 = 3 𝑚𝑚  

 𝑅𝑠𝑡𝑟.𝑢𝑝 = 15 𝑚𝑚  

 𝛿𝑠𝑘𝑖𝑛.𝑏𝑜𝑡 = 8 𝑚𝑚  
 𝑅𝑠𝑡𝑟.𝑏𝑜𝑡 = 2.84 𝑚𝑚 

 𝑚𝑤𝑖𝑛𝑔𝑏𝑜𝑥 𝑚𝑖𝑛 = 529.3 𝑘𝑔 

 𝜎𝑧 𝑚𝑎𝑥 = 202.6 𝑀𝑃𝑎 
 𝜎𝑧 𝑚𝑖𝑛 = −275.6 𝑀𝑃𝑎 
 𝜎𝑣 𝑚𝑎𝑥 = 382.3 𝑀𝑃𝑎 
 𝑢𝑦 𝑚𝑎𝑥 = 0.1916 𝑚 

 𝜆𝐼 = 2.795 

Fig. 5, 6, 7 and 8 present the plots for the change of the objective function and its variation in the 

swarm, as well as the values of the functional constraints for each particle of the swarm during the 

optimization procedure. The final assessment of the optimization process, as well as the obtained results, 

reveal that the proposed procedure converges to global minima while satisfying all of the imposed 

constraints. 

 

Fig. 5 Convergence of the objective function: wingbox minimal mass, [kg] 

 

Fig. 6 Change in the variation 𝜎2 of the objective function in the swarm 

𝜎2 =
(∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 )

𝑛 − 1
 



 

Fig. 7 Convergence of the maximum von Mises stress 𝜎𝑣 𝑚𝑎𝑥 towards the imposed constraint 

 

Fig. 8 Convergence of the buckling load factor 𝜆𝑚𝑖𝑛 towards the imposed constraint 

Fig. 9 shows the obtained optimal wingbox. The boundary conditions for the finite element analysis 

are visualized in Fig. 10. The vertical displacements, normal and equivalent stresses as well as the 

distribution of the buckling load factor in the optimal wingbox as a result of the applied boundary 

conditions are presented in Fig. 11. 

 
Fig. 9 Optimal wingbox load-bearing structure 



 

Fig. 10 Boundary conditions for the finite element analysis 

 

 

 

Fig. 11 Vertical displacements, normal and equivalent stresses, distribution of the buckling load factor 

in the optimal wingbox 

 

4. Conclusion 

A heuristic technique based on a swarm of intelligent particles is suggested for structural 

optimization of a wingbox. Based on a parametric finite element model, an optimization procedure for 

the minimum mass of the load-bearing structure is implemented under the condition of not exceeding 

the maximum allowable equivalent stress and providing a margin of stability for the structure by varying 

the values of eight design variables. The key issue for the heuristic structural optimization approach was 

to account for all of the constraints. For this reason, the algorithm modifies the objective values of the 

individual particles using a parameterless adaptive penalization technique. The optimization process and 

the results demonstrate that the proposed method takes into consideration all of the specified constraints 

and successfully converges to a global minimum.  

The proposed heuristic structural-optimization procedure can be further developed in the future 

through research on the following topics:  

- investigation of the influence of cognitive and social coefficients on the efficiency of the 

optimization procedure; 

- investigation of the possibility for estimation of the required number of spars, ribs, and stringers as 

a result of heuristic layout optimization considering different internal layout requirements;  

- investigation of the possibility for simultaneous handling of boundary conditions for more than one 

load case;  

- integration of topology optimization procedure for optimal distribution of structural material in the 

load-bearing components. 

 

𝑞
𝑎𝑒𝑟

(𝑧) =
4 ⋅ 𝑝 ⋅ 𝑆𝑤
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𝜋 ⋅ 𝐿𝑤
′

√1 − (
𝑧

𝐿𝑤
′

)
2

 



References 

1. ASME V&V 10.1-2012: An Illustration of the Concepts of Verification and Validation in 
Computational Solid Mechanics. 

2. Chang, N., Wang, W., Yang, W., & Wang, J. (2010). Ply stacking sequence optimization of 
composite laminate by permutation discrete particle swarm optimization. Structural and Multidisciplinary 
Optimization, 41(2), 179-187. 

3. Chollom, T. D., Ofodile, N., & Ubadike, O. (2016, September). Application Techniques of Multi-
objective particle swarm optimization: Aircraft flight control. In 2016 UKACC 11th International 
Conference on Control (CONTROL) (pp. 1-6). IEEE. 

4. Christensten, P. W., & Klarbring, A. (2008). An introduction to Structural Optimization. Springer 
Science & Business Media 

5. Dorigo M, Maniezzo V, and Colorni A. (1996). The ant system: optimization by a colony of  
cooperating agents, IEEE Trans Syst Man Cybernet B, Vol. 26, No. 1, pp. 29–41. 

6. El Afia, A., & Sarhani, M. (2017, March). Particle swarm optimization for model selection of aircraft 
maintenance predictive models. In Proceedings of the 2nd international Conference on Big Data, Cloud 
and Applications (pp. 1-12). 

7. Goldberg D. (1989). Genetic algorithms in search, optimization, and machine learning. Addison- 
Wesley, New York, NY. 

8. Gümüşboğa, İ., & İftar, A. (2019). Aircraft trim analysis by particle swarm optimization. Journal of 
Aeronautics and Space Technologies, 12(2), 185-196. 

9. Haftka R, and Gurdal Z. (1992). Elements of structural optimization, 3rd ed. Kluwer Academic 
Publishers. 

10. Haug E, and Arora J. (1979). Applied optimal design, Wiley, New York, NY. Hu X, Eberhart R, 
and Shi Y. (2003). Engineering optimization with particle swarm, IEEE Swarm intelligence symposium 
(SIS 2003),Indianapolis, IN, pp. 53–57. 

11. Holland, J. (1992). Genetic Algorithms. Scientific American, 66-72. 
12. Kathiravan, R., & Ganguli, R. (2007). Strength design of composite beam using gradient and 

particle swarm optimization. Composite structures, 81(4), 471-479. 
13. Kennedy J, and Eberhart R. (1995). Particle swarm optimization, IEEE international conference 

on neural networks, Vol. IV, Piscataway, NJ, pp. 1942–1948. 
14. Kirkpatrick S, Gelatt C, and Vecchi M. (1983). Optimization by simulated annealing. Science, Vol. 

220, No. 4598, pp. 671–680 
15. Kreisselmeier, G., & Steinhauser, R. (1979). Systematic control design by optimizating a vector 

performance index. IFAC Computer Aided Design of Control Systems. 
16. Martins, J. R. R. A., & Poon, N. M. (2005, June). On structural optimization using constraint 

aggregation. In VI World Congress on Structural and Multidisciplinary Optimization WCSMO6, Rio de 
Janeiro, Brasil. 

17. Perez, R. E., & Behdinan, K. (2007). Particle swarm optimization in structural design. Swarm 
intelligence: Focus on ant and particle swarm optimization, (532). 

18. Sobester, A., Forrester, A., & Keane, A. (2008). Engineering design via surrogate modelling: a 
practical guide. John Wiley & Sons. 

19. Venter G, and Sobieszczanski-Sobieski J. (2004). Multidisciplinary optimization of a transport 
aircraft wing using particle swarm optimization,  Struct Multidiscip Optimiz, Vol. 26, No. 1–2, pp. 121–
131. 

20. Zadeh, P. M., Fakoor, M., & Mohagheghi, M. (2018). Bi-level optimization of laminated composite 
structures using particle swarm optimization algorithm. Journal of Mechanical Science and Technology, 
32(4), 1643-1652. 

21. Бирюк,  В.И.  Методы  проектирования  конструкций  самолётов Текст]  / В.  И.  Бирюк, Е.  
К.  Липин, В.М.  Фролов.  -  М.  :  Машиностроение, 1977.-232 с. 

22. Егер С. М. , Лисейцев Н. К. § Самойлович О. С. , Основы автоматизированного 
проектирования самолетов., М.: Машиностроение, 1986. 

23. Фролов К.В., Том IV-21. Книга 2. Машиностроение. Энциклопедия в сорока томах. 
Самолеты и вертолеты. Проектирование, конструкции и системы самолетов и вертолетов, М.: 
Машиностроение, 2004. 


